CMSC 426 Principles of Computer Security

Lecture 16
Linux and Windows Authentication

Last Class We Covered

- Authentication
- Password Hashing
- Password Cracking
 - Brute-force attacks
 - Dictionary attacks
 - Rainbow tables
- Salted passwords

Any Questions from Last Time?

Recap: Different Password Attacks

- Brute-force
 - Try all possible passwords on the system (no hashes needed)
 - BIG time investment, zero space cost
- Dictionary attack (data structure)
 - Create a dictionary of possible passwords,
 where the key is the hash, and the value is the password
 - BIG upfront time investment, BIG BIG space cost, small attack time
- Rainbow tables
 - Use a different method of storing the possible passwords and hashes
 - BIG upfront time investment, BIG space cost, medium attack time

<u>Dictionary attack ("traditional")</u>
Use a list of possible passwords; can be combined/used with other attacks

Recap: Different Password Attacks

- Brute-force
 - Try all possible passwords on the system (no hashes needed)
 - BIG time investment, zero space cost
- Dictionary attack ("traditional" definition)
 - Use a list of possible passwords; can be used with other attacks
- Dictionary attack (data structure definition)
 - Create a dictionary of possible passwords, where the key is the hash, and the value is the password
 - Upfront time investment, BIG BIG space cost, small attack time

Today's Topics

Linux authentication

- Windows authentication
 - Standalone system authentication
 - Domain authentication

- Kerberos protocol
 - Next time

Linux Authentication

The /etc/passwd File

- Text file that stores information about user accounts
 - Readable by any user
 - On legacy UNIX systems, stored passwords hashed by the UNIX crypt() algorithm
 - Now a bit of a misnomer on modern Linux operating system
- For each user, lists username, user ID (uid), group ID (gid), comments, home directory, preferred shell

```
rj:x:1000:1000:RJ,,,:/home/rj:/bin/bash
```

UNIX crypt() Algorithm

UNIX passwords were originally limited to 8 characters

- crypt() was a legacy function used to "hash" passwords
 - Password used was a 56-bit key
 - 12-bit salt
 - Used a modified version of DES to make it one-way
 - Encrypted a 64-bit block of 0s, 25 rounds

The /etc/shadow File

- Text file that stores password information, only readable by root
- For each user, lists username, hashed password, info about password change/expiration policy
- Password field actually contains 3 separate parts separated by \$
 - ID of hashing algorithm, salt, password hash

```
rj:$6$VEpaqG7Z$0hdWp6bdmrrgNX/44msduyOkd5W8fhIe
a1cZWcvrIv0rVNw2PWxPugoKmRNeqrptbR5tGjOo10UFVZ1
pQlnIk1:17416:0:99999:7:::
```

Windows Authentication

Local Security Authority (LSA)

 Windows subsystem responsible for managing authentication and local security policy

- Local security policy determines:
 - Which users can access the system and in what way (e.g., interactively, over the network, or as a service)
 - Which users have which permissions on the system
 - What forms of auditing are being performed

Security Accounts Manager (SAM)

- Database on standalone Windows systems that stores users' password hashes
- Two password hashing algorithms have been used
 - Lan Manager hash (LanMan, LM)
 - NT hash (NTLM)
- On most modern Windows versions, the SAM file is additionally encrypted to prevent offline password cracking
 - As of Windows 10, full disk encryption is preferred

Lan Manager Hash (LanMan, LM)

In legacy versions of Windows, passwords were
 14 characters max and not case sensitive

- LM hash algorithm:
 - Pad password to 14 characters
 - Convert to upper case
 - Split in half, use each half as a 56-bit DES key
 - □ DES encrypt the string "KGS!@#\$%" with both keys
 - Concatenate the two encrypted strings

Lan Manager Hash Security

- Trivial to brute force
 - Just need to crack each of the two 7-byte halves
 - Exponentially easier to brute-force two 7-character strings than a single 14-character string
 - Also, since passwords are converted to uppercase, it's even easier to crack
- Default prior to Windows NT (released 2003)
- Disabled since Windows Vista
 - Means it was usable until 2006!

NT Hash (NTLM)

- Hash used by modern Windows systems
- NT Hash Algorithm:
 - Encode password in UTF-16 little-endian
 - Take the MD4 hash of the encoded password
- Other info:
 - Passwords can be longer than 14 characters
 - Passwords are still not salted

Windows Domains

- A group of computers connected over a network and managed by a central computer called a domain controller
- Password hashes stored in Active Directory database
- Three protocols have been used for authentication between a client and a server on a domain
 - NTLMv1 Protocol
 - NTLMv2 Protocol
 - Kerberos

NTLMv1 Authentication Protocol

- Server issues a random 8-byte challenge to the client
- Client computes both the LM and NT hashes of the password
- Each 16-byte hash is padded to 21 bytes using 5 null bytes
- Both 21-byte values are separated into three 7-byte (56-bit) blocks
- Each block is DES encrypted using the challenge as a key, then all are appended together into a 48-byte response
- The server computes this as well and validates the response
- Insecure due to use of LM hash and DES

NTLMv2 Authentication Protocol

- Server issues a random 8-byte challenge to the client
- Client sends two responses containing information such as a random 8-byte value, the current time, the NT hash of the password, the user name, and the name of the domain
- Server validates responses

```
SC = 8-byte server challenge, random
CC = 8-byte client challenge, random
CC* = (X, time, CC2, domain name)
v2-Hash = HMAC-MD5(NT-Hash, user name, domain name)
LMv2 = HMAC-MD5(v2-Hash, SC, CC)
NTv2 = HMAC-MD5(v2-Hash, SC, CC*)
response = LMv2 | CC | NTv2 | CC*
```

Kerberos Protocol

Kerberos Protocol

- Leading standard protocol for remote authentication
 - Used by many OSes, not just Windows
 - Will mostly be talking about it in the context of Windows domains
- Manages client-server interactions using a Key Distribution Center (KDC)
- Key Distribution Center provides two services:
 - Authentication Service (AS)
 - Ticket-Granting Service (TGS)